
Supplementary Material

Section A: Integral Representation For The Generating Function

The model dealt with in this paper, the nearest-neighbor random walk on a simple cubic
lattice, is sufficiently simple enough to allow the exact representation for the generating
functions to be found in terms of the function H(τ ;u|v) given in Eq.(6). Let p(F )(j) be the
probability that the displacement in a single step of a random walk in free space is equal
to j which can take on any one of the six values (±1,±1,±1)/6. Let ci = cos θi, i = 1, 2, 3.
Consider, first the random walk on an absorption-free unbounded lattice. The characteristic
function for such a random walk is defined in terms of the θi by
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An integral representation for the propagator on an unbounded lattice is
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with the corresponding generating function
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The triple integral can be reduced to a single integral by replacing the denominator by the
identity u−1 =
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where the Im(u) are modified Bessel functions of the first kind. The value of ζ derived from
Eq.(9) is seen to be e−µ

a/(1 + η).
To fulfill the requirement that the propagator should vanish at z = 0 we use the method

of images to write
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which satisfies the boundary condition at z = 0. This expression can be represented as a
Laplace transform by changing the variable of integration to ρ = λζ. This leads to the
integral representation
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= 6L{H(ρ; r|r�) exp [−ρ (eµ
a − 1− µa)]}

where L{} is the Laplace transform of the bracketed terms with a Laplace parameter ηeµ
a .
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